Feature Selection Using Particle Swarm Optimization in Text Categorization
نویسندگان
چکیده
Feature selection is the main step in classification systems, a procedure that selects a subset from original features. Feature selection is one of major challenges in text categorization. The high dimensionality of feature space increases the complexity of text categorization process, because it plays a key role in this process. This paper presents a novel feature selection method based on particle swarm optimization to improve the performance of text categorization. Particle swarm optimization inspired by social behavior of fish schooling or bird flocking. The complexity of the proposed method is very low due to application of a simple classifier. The performance of the proposed method is compared with performance of other methods on the Reuters-21578 data set. Experimental results display the superiority of the proposed method.
منابع مشابه
Improving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...
متن کاملstatistic, principal component analysis and particle swarm optimization
Today, the number of text documents in digital form is progressively increasing and text categorization becomes the key technology of dealing with organizing text data. A major problem of text categorization is a huge-scale number of features. Most of those are useless, irrelevant or redundant for text categorization. Therefore, these features can decrease the classification performance. In ord...
متن کاملText Feature Selection using Particle Swarm Optimization Algorithm
Text Categorization (TC) has become recently an important technology in the field of organizing a huge number of documents. Feature Selection (FS) is commonly used to reduce dimensionality of text datasets with huge number of features which would be difficult to process further. In this paper we have implemented an efficient feature selection algorithm based on Particle Swarm Optimization (PSO)...
متن کاملFilter-Wrapper Approach to Feature Selection Using PSO-GA for Arabic Document Classification with Naive Bayes Multinomial
Text categorization and feature selection are two of the many text data mining problems. In text categorization, the document that contains a collection of text will be changed to the dataset format, the dataset that consists of features and class, words become features and categories of documents become class on this dataset. The number of features that too many can cause a decrease in perform...
متن کاملA New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Artif. Intell. Soft Comput. Res.
دوره 5 شماره
صفحات -
تاریخ انتشار 2015